INVESTMENT and MIXTURE PROBLEMS
 Professor Howard Sorkin hsorkin1@gmail.com
 Sample Problems

1. Carlos invested a sum of money at 7%. He invested a second sum, $\$ 200$ more than the first sum, at 8%. The annual income from the two investments is $\$ 346$. Find the amount he invested at each rate.

The formula we use is
PR = I
(Principal) X (Rate) $=$ Interest

\mathbf{P}	\mathbf{R}	\mathbf{I}
x	.07	$.07 x$
$x+200$.08	$.08(x+200)$

Step 1 - Write the equation
Step 2 - Multiply both sides of the equation by 100 to get rid of the decimals

$$
\begin{gathered}
.07 x+.08(x+200)=346 \\
100[.07 x+.08(x+200)]=100(346) \\
100(.07 x)+100(.08)(x+200)=100(346) \\
7 x+8(x+200)=34600
\end{gathered}
$$

Step 3 - Use the distributive property to multiply

$$
8(x+200)
$$

$$
7 x+8 x+1600=34600
$$

Step 4 - Combine like terms

$$
15 x+1600=34600
$$

Step 5 - Subtract 1600 from both sides

$$
15 x=33000
$$

Step 6 - Divide both sides of the equation by 15 to get the solution for x

$$
x=2200
$$

Therefore the solution to the problem is:
$\$ 2,200$ was invested at 7% and $(\$ 2,200+\$ 200)=\$ 2,400$ was invested at 8%
2. Danny invested $\$ 11,000$. Part of his money is invested in bonds which yield 8% and the remainder is invested in bonds which yield 10%. His total annual income from these bonds is $\$ 1,020$. Find the amount he has invested in each kind of bond.

\mathbf{P}	\mathbf{R}	\mathbf{I}
x	.08	$.08 x$
$11000-x$.10	$.10(11000-x)$

Step 1 - Write the equation

$$
\begin{gathered}
.08 x+.10(11000-x)=1020 \\
100[.08 x+.10(11000-x)]=100(1020) \\
100(.08 x)+100(.10)(11000-x)=100(1020) \\
8 x+10(11000-x)=102000
\end{gathered}
$$

Step 2 - Multiply both sides of the equation by 100 to get rid of the decimals

Step 3 - Use the distributive property to multiply

$$
10(11000-x)
$$

$$
8 x+110000-10 x=102000
$$

Step 4 - Combine like terms

$$
-2 x+110000=102000
$$

Step 5 - Subtract 110000 from both sides

$$
-2 x=-8000
$$

Step 6 - Divide both sides of the equation by -2 to get the solution for x

$$
x=4000
$$

Therefore the solution to the problem is:
$\$ 4,000$ was invested at 8% and $(\$ 11000-\$ 4000)=\$ 7,000$ was invested at 10%
3. A chemist has one solution that is 14% salt and another solution which is 18% salt. How many ounces of each must be used to produce 60 ounces that is 15% salt?

The formula we use is
$\mathbf{A} \bullet \%=\mathbf{T}$
(Amount)•(\%) = Total amount of each substance

\mathbf{A}	$\mathbf{\%}$	\mathbf{T}
x	.14	$.14 x$
$60-x$.18	$.18(60-x)$
60	.15	$.15(60)$

Step 1 - Write the equation

$$
\begin{gathered}
.14 x+.18(60-x)=.15(60) \\
100[.14 x+.18(60-x)]=100(.15)(60) \\
100(.14 x)+100(.18)(60-x)=15(60) \\
14 x+18(60-x)=900
\end{gathered}
$$

Step 3 - Use the distributive property to multiply

$$
18(60-x) \quad 14 x+1080-18 x=900
$$

Step 4 - Combine like terms

$$
-4 x+1080=900
$$

Step 5 - Subtract 900 from both sides

$$
-4 x=-180
$$

Step 6 - Divide both sides of the equation by -2 to get the solution for x

$$
x=45
$$

Therefore the solution to the problem is:
45 ounces of the 14% solution and $(60-45)=15$ ounces of the 18% solution
4. How many pounds of pure salt must be added to 60 pounds of a 8% solution of salt and water to increase it to a 20% solution?

Note: When a substance is pure we write 100% for the percentage of its content.

\mathbf{A}	\%	\mathbf{T}
60	.08	$.08(60)$
x	1.00	$1.00 x$
$(60+x)$.20	$.20(60+x)$

Step 1 - Write the equation
Step 2 - Multiply both sides of the equation by 100 to get rid of the decimals

$$
\begin{gathered}
.08(60)+1.00 x=.20(60+x) \\
100[.08(60)+1.00 x]=100[(.20)(60+x)] \\
100(.08)(60)+100(1.00 x)=100(.20)(60+x) \\
8(60)+100 x=20(60+x)
\end{gathered}
$$

Step 3 - Use the distributive property to multiply

$$
20(60+x)
$$

$$
480+100 x=1200+20 x
$$

Step 4 - Subtract 20x from both sides

$$
480+80 x=1200
$$

Step 5 - Subtract 480 from both sides

$$
80 x=720
$$

Note: Steps 4 and 5 can be combined into one step
Step 6 - Divide both sides of the equation by 80 to get the solution for x

$$
x=9
$$

Therefore the solution to the problem is that 9 pounds of pure salt must be added to 60 pounds of a 8% solution of salt and water to increase it to a 20% solution.

INVESTMENT and MIXTURE PROBLEMS
 Professor Howard Sorkin hsorkin1@gmail.com

INVESTMENT PROBLEMS

1. Steve invested a sum of money at 4%. He invested twice as much at 5%. The total annual income from these investments was $\$ 210$. Find the amount he invested at each rate.
2. Ken invested a sum of money at 4%. He invested a second sum, $\$ 250$ more than the first sum, at 6%. If his total annual income was $\$ 90$, how much did he invest at each rate?
3. Mark invested a sum of money at 3%. He invested a second sum, $\$ 150$ less than the first sum, at 6%. The total annual income was $\$ 54$. Find the amount invested at each rate.
4. Mr. Jones invested a sum of money in 6% bonds. He invested $\$ 400$ more than this sum in 4% bonds. If his total annual income was $\$ 116$, how much did he invest in each kind of bond?
5. Juan invested a sum of money at 6%. He invested a second sum, which exceeded twice the first sum by $\$ 1000$, at 10%. His total annual income was $\$ 620$. Find the amount he invested at each rate.
6. Bob invested $\$ 4000$, part at 5% and the remainder at 3%. The total annual income from both investments was $\$ 152$. Find the amount invested at each rate.
7. Frank invested $\$ 25,000$, part at 4% and the remainder at 7%. The total income he received at the end of the year was $\$ 1,450$. How much did he invest at each rate?
8. A sum of $\$ 3500$ is invested in two parts. One part brings a return of 5% and the other a return of 8%. The total annual return is $\$ 250$. Find the amount invested at each rate.
9. Janice has invested $\$ 7,500$ in two parts, one part at 6% and the other at 10%. Find the amount invested at each rate if the total yearly income is $\$ 590$.
10. Mr. Sims invested $\$ 8000$. Part of his money is invested in bonds which yield 4% and the remainder is invested in bonds which yield 5%. His total annual income from these bonds is $\$ 380$. Find the amount he has invested in each kind of bond.
11. Mr. Marcus invested a sum of money at 6%. He invested $\$ 200$ more than this sum at 4%. If the annual incomes from both investments were the same, find the amount invested at each rate.
12. Mike invested $\$ 7200$, part at 4% and the remainder at 5%. If the annual incomes from both investments were equal, find the amount invested at each rate.
13. Mr. Austin has invested $\$ 18,000$ in two parts. One part is invested at 8% and the other at 10%. The annual income from the 10% investment is $\$ 360$ more than the annual income from the 8% investment. Find the amount invested at each rate.
14. The sum of $\$ 4000$ is invested, part at 4% and the rest at 6%. The annual income from the 6% investment is $\$ 10$ less than the annual income from the 4% investment. Find the amount invested at each rate.
15. Joe bought two bonds for $\$ 15,000$. One bond pays 6% interest and the other pays 8% interest. The annual interest from the 8% bond exceeds the annual interest from the 6% bond by $\$ 500$. Find the cost of each bond.

Answers:

$1 . \$ 1,500 @ 4 \%, \$ 3,000 @ 5 \%$	6. $\$ 1,600 @ 5 \%, \$ 2,400 @ 3 \%$	$11 . \$ 400 @ 6 \%, \$ 600 @ 4 \%$
2. $\$ 750 @ 4 \%, \$ 1,000 @ 6 \%$	$7 . \$ 10,000 @ 4 \%, 15,000 @ 7 \%$	$12 . \$ 4,000 @ 4 \%, \$ 3,200 @ 5 \%$
3. $\$ 700 @ 3 \%, \$ 550 @ 6 \%$	$8 . \$ 1,000 @ 5 \%, \$ 2,500 @ 8 \%$	$13 . \$ 8,000 @ 8 \%, \$ 10,000 @ 10 \%$
$4 . \$ 1,000 @ 6 \%, \$ 1,400 @ 4 \%$	$9 . \$ 4,000 @ 6 \%, \$ 3,500 @ 10 \%$	$14 . \$ 2,500 @ 4 \%, \$ 1,500 @ 6 \%$
$5 . \$ 2,000 @ 6 \%, \$ 5,000 @ 10 \%$	$10 . \$ 2,000 @ 4 \%, \$ 6,000 @ 5 \%$	$15 . \$ 5,0006 \% ; \$ 10,000 @ 8 \%$

MIXTURE PROBLEMS

1. A chemist has one solution that is 30% salt and another solution that is 60% salt. How many ounces of each must she use to produce 60 ounces of a solution that is 50% pure salt?
2. A farmer has some cream that is 24% butterfat and some cream that is 18% butterfat. How many quarts of each must she use to produce 90 quarts of cream that is 22% butterfat?
3. How many pints of a solution that is 30% alcohol must be mixed with 21 pints of a solution that is 80% alcohol to produce a mixture that is 60% alcohol?
4. How many ounces of a silver alloy that is 30% silver must be mixed with 18 ounces of a silver alloy that is 12% silver to produce a new alloy that is 18% silver?
5. How many quarts of a solution that is 75% acid must be mixed with 16 quarts of a solution that is 30% acid to produce a solution that is 55% acid?
6. How many pounds of pure salt must be added to 60 pounds of a 4% solution of salt and water to increase it to a 10% solution?
7. An alloy of copper and tin is 20% copper. How many pounds of copper must be added to 80 pounds of the alloy in order that the resulting alloy be 50% copper?
8. A certain grade of metal that is a mixture of tin and copper contains 16% tin. How much tin must be added to 820 pounds of the metal to make a mixture that is 18% tin?
9. How much pure acid must be added to 30 ounces of an acid solution which is 40% acid in order to produce a solution which is 50% acid?
10. Of 24 pounds of salt water, 8% is salt. Of another mixture, 4% is salt. How many pounds of the second mixture should be added to the first mixture in order to get a mixture that is 5% salt?
11. One solution is 20% salt and another solution is 13% salt. How many ounces of each solution must be used to produce 35 ounces of a solution that is 15% salt?
12. A certain alloy of copper and silver weighs 50 pounds and is 10% silver. How much silver must be added to produce a metal that is 25% silver?

Answers:

$1.20 \mathrm{oz} . @ 30 \%, 40 \mathrm{oz}$ @ $@ 0 \%$	5.20 qts.	9.6 oz.
2. 60 qts. @ $24 \%, 30$ qts. @ 18%	6.4 lbs.	10.72 lbs.
3.14 pts.	7.48 lbs.	11.10 oz of 20% solution 25 oz. of 13% solution
4.9 oz.	8.20 lbs.	12.10 lbs.

