SUPPLEMENTARY SHEET 7
 SQUARE ROOTS
 Professor Howard Sorkin hsorkin1@gmail.com

SIMPLIFYING SQUARE ROOTS:

Remember: When we simplify a square root we look for the largest perfect square which is a factor of the given number.

Example:

Simplify $\sqrt{48}$
Even though $\mathbf{4}$ is a perfect square that is a factor or 48 , the largest perfect square which is a factor if 48 is 16 . If we used 4 we would have to simplify twice instead of only once.
Using 4 we would have:

$$
\sqrt{48}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}=2 \sqrt{4} \cdot \sqrt{3}=2 \cdot 2 \sqrt{3}=4 \sqrt{3}
$$

THIS IS MUCH TOO MUCH WORK!!!
Here is the better way: $\sqrt{48}=\sqrt{16} \bullet \sqrt{3}=4 \sqrt{3}$
Simplify the following square roots:

1. $\sqrt{8}$
2. $\sqrt{20}$
3. $\sqrt{45}$
4. $\sqrt{72}$
5. $-\sqrt{108}$
6. $-\sqrt{128}$
7. $-\sqrt{300}$
8. $\sqrt{-12}$
9. $-\sqrt{50}$
Answers:
10. $2 \sqrt{2}$
11. $2 \sqrt{5}$
12. $3 \sqrt{5}$
13. $6 \sqrt{2}$
14. $-6 \sqrt{3}$
15. $-8 \sqrt{2}$
16. $-10 \sqrt{3}$
17. not a real number
18. $-5 \sqrt{2}$

MULTIPLYING and SIMPLIFYING SQUARE ROOTS

Example:
Multiply and Simplify: $2 \sqrt{54} \bullet 5 \sqrt{75}$
This can be done in two different ways:

THE HARDER WAY!!

$$
\begin{aligned}
2 \sqrt{54} \cdot 5 \sqrt{75} & =2 \bullet 5 \sqrt{54 \bullet 75} \\
& =10 \sqrt{4050}
\end{aligned}
$$

Now you are left with trying to find perfect squares that are factors of this number.

This can be difficult.
We know 9 goes into 4050 by the divisibility rule for 9 (9 goes into a number if the sum of the digits of the number is divisible by $\mathbf{9}$). The sum of $4+0+5+0$ is 9 . Since 9 is divisible by 9,9 goes into 4050.

Therefore: $10 \sqrt{4050}=10 \sqrt{9 \bullet 450}$

$$
=10 \cdot 3 \sqrt{450}
$$

$$
\begin{aligned}
& =30 \sqrt{9 \bullet 50} \\
& \downarrow \\
& =30 \cdot 3 \sqrt{25 \cdot 2} \\
& \swarrow \\
& =90 \cdot 5 \sqrt{2}
\end{aligned}
$$

$$
=450 \sqrt{2}
$$

THE EASIER WAY!!

First we simplify each square root:
square.

Factor 6 into 2 • 3 by the $3 \cdot 3$

Multiply 150 • 3

$$
=450 \sqrt{2}
$$

Multiply and Simplify:

1. $\sqrt{24} \cdot \sqrt{3}$
2. $\sqrt{3} \cdot \sqrt{21}$
3. $\sqrt{6} \cdot \sqrt{12}$
4. $\sqrt{50} \cdot \sqrt{9}$
5. $\sqrt{12} \cdot \sqrt{8}$
6. $\sqrt{75} \cdot \sqrt{6}$
7. $\sqrt{6} \cdot \sqrt{18}$
8. $\sqrt{50} \cdot \sqrt{10}$
9. $\sqrt{26} \cdot \sqrt{13}$
Answers:
10. $6 \sqrt{2}$
11. $3 \sqrt{7}$
12. $6 \sqrt{2}$
13. $15 \sqrt{2}$
14. $4 \sqrt{6}$
15. $15 \sqrt{2}$
16. $6 \sqrt{3}$
17. $10 \sqrt{5}$
18. $13 \sqrt{2}$

Page 2 of 5 pages

ADDING and SUBTRACTING SQUARE ROOTS

Just as we must have like terms when adding or subtracting algebraic expressions we must have like square roots when we add or subtract square roots.

Example: Find the answer to $4 \sqrt{12}+5 \sqrt{3}-2 \sqrt{75}$
The square roots in this problem are not like square roots.
First we need to simplify each square root.

$$
\begin{aligned}
4 \sqrt{12}+5 \sqrt{3}-2 \sqrt{75} & =4 \sqrt{4 \bullet 3}+5 \sqrt{3}-2 \sqrt{25 \bullet 3} \\
& =4 \bullet 2 \sqrt{3}+5 \sqrt{3}-2 \bullet 5 \sqrt{3} \\
& =8 \sqrt{3}+5 \sqrt{3}-10 \sqrt{3}=3 \sqrt{3}
\end{aligned}
$$

Find the answers to each of the following:

1. $5 \sqrt{3}+2 \sqrt{3}+8 \sqrt{3}$
2. $5 \sqrt{3}+\sqrt{3}-2 \sqrt{3}$
3. $\sqrt{2}+\sqrt{50}$
4. $\sqrt{27}+\sqrt{75}$
5. $\sqrt{5}+\sqrt{45}+\sqrt{80}$
6. $\sqrt{72}-\sqrt{50}$
7. $\sqrt{12}-\sqrt{48}+\sqrt{3}$
8. $3 \sqrt{2}+2 \sqrt{32}$
9. $5 \sqrt{27}-\sqrt{108}+2 \sqrt{75}$
10. $3 \sqrt{40}-\sqrt{90}$
11. $3 \sqrt{8}-\sqrt{2}$
12. $5 \sqrt{8}-3 \sqrt{18}+\sqrt{3}$
13. $3 \sqrt{50}-5 \sqrt{18}$
14. $3 \sqrt{28}-2 \sqrt{63}$
15. $\sqrt{98}-4 \sqrt{8}+3 \sqrt{128}$
16. $\frac{1}{2} \sqrt{20}+\sqrt{45}$
17. $\frac{2}{3} \sqrt{18}-\sqrt{72}$
18. $4 \sqrt{18}-\frac{3}{4} \sqrt{32}-\frac{1}{2} \sqrt{8}$

Answers:	$1.15 \sqrt{3}$	$2.4 \sqrt{3}$	3. $6 \sqrt{2}$	$4.8 \sqrt{3}$	$5.8 \sqrt{5}$	6. $\sqrt{2}$
	$7 .-\sqrt{3}$	$8.11 \sqrt{2}$	$9.19 \sqrt{3}$	$10.3 \sqrt{10}$	$11.5 \sqrt{2}$	12. $\sqrt{2}+\sqrt{3}$
	13.0	14.0	$15.23 \sqrt{2}$	$16.4 \sqrt{5}$	$17 .-4 \sqrt{2}$	$18.8 \sqrt{2}$

Example 1:

$$
\text { Solve: } x^{2}=25
$$

The way we are used to solving this equation is to set the equation equal to zero.

$$
x^{2}-25=0
$$

Next we factor:

$$
\begin{array}{r|l}
(x-5) & (x+5)=0 \\
x-5=0 & x+5=0 \\
x=5 & x=-5
\end{array}
$$

The Solution Set is $\{-5,5\}$.
Another way we can write this is $\{ \pm 5\}$
When we have an equation involving the difference of squares (i.e. $\mathrm{x}^{2}-\mathrm{a}^{2}=0$) we should realize that we will always get an answer that is always plus and minus the square root of a^{2}

In this case the answer is $-\sqrt{25}$ or $+\sqrt{25}$ or -5 and +5

This fact can be used to solve the equation

$$
x^{2}=25
$$

by using the SQUARE ROOT PROPERTY.
The SQUARE ROOT PROPERTY states that if we have an equation of the form:

$$
x^{2}=a
$$

then

$$
x=\sqrt{a} \text { or } x=-\sqrt{a}
$$

so in solving $x^{2}=25$ we have:

$$
\mathrm{x}=-\sqrt{25} \text { or }+\sqrt{25}
$$

which we can write $x= \pm \sqrt{25}= \pm 5$
In Solution Set form: $\{ \pm 5\}$

Example 2:
We can now use the SQUARE ROOT
PROPERTY to solve equations that we could not solve before.

$$
\text { Solve: } x^{2}=19
$$

If we set this equal to zero we can see that this is not a difference of squares, however, by the SQUARE ROOT PROPERTY:

$$
\begin{gathered}
\mathrm{x}=\sqrt{19} \text { or } \mathrm{x}=-\sqrt{19} \text { or } \\
\mathrm{x}= \pm \sqrt{19}
\end{gathered}
$$

In Solution Set form $\{ \pm \sqrt{19}\}$

Example 3:

$$
\text { Solve: } x^{2}=20
$$

We now know that $x=\sqrt{20}$ or $x=-\sqrt{20}$ or
Simplifying: $x=\sqrt{4 \bullet 5}=2 \sqrt{5}$ or

$$
x=-\sqrt{4 \bullet 5}=-2 \sqrt{5}
$$

so

$$
x= \pm 2 \sqrt{5}
$$

In Solution Set form $\{ \pm 2 \sqrt{5}\}$

Solve each of the following equations. Express radicals in simplest form.

1. $\mathrm{x}^{2}=64$
2. $\mathrm{z}^{2}=100$
3. $\mathrm{y}^{2}=23$
4. $x^{2}=5$
5. $a^{2}=72$
6. $m^{2}=48$
7. $\mathrm{p}^{2}=17$
8. $x^{2}=24$
9. $\mathrm{b}^{2}=108$
10. $\mathrm{x}^{2}=75$
11. $\mathrm{y}^{2}=121$
12. $\mathrm{x}^{2}=35$

| Answers: | 1. $\{ \pm 8\}$ | 2. $\{ \pm 10\}$ | 3. $\{ \pm \sqrt{23}\}$ | 4. $\{ \pm \sqrt{5}\}$ | 5. $\{ \pm 6 \sqrt{2}\}$ | 6. | $\{ \pm 4 \sqrt{3}\}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 7. $\{ \pm \sqrt{17}\}$ | 8. | $\{ \pm 2 \sqrt{6}\}$ | 9. | $\{ \pm 6 \sqrt{3}\}$ | 10. | $\{ \pm 5 \sqrt{3}\}$ | $11 .\{ \pm 11\}$ | 12. $\{ \pm \sqrt{35}\}$ |

