ALGEBRA
Prof. Howard Sorkin                   Contact

SUPPLEMENTARY SHEET 5
NEGATIVE EXPONENTS and SCIENTIFIC NOTATION
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - To DOWNLOAD this page for PRINTING .
If you are unable to do this you need to first DOWNLOAD Adobe's Acrobat Reader.
To obtain it click on https://get.adobe.com/reader/otherversions/

. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Notes on Sets Supplementary Sheet 6 - Adding and Subtracting rational expressions with Unlike Denominators
Supplementary Sheet 1 - Sets: Union, Intersection, Complement
Supplementary Sheet 2 - Number and Consecutive Number Word prolems Supplementary Sheet 7 - Square Roots
Supplementary Sheet 3 - Perimeter and Coin Word Problems Investment and Mixture Word Problems
Supplementary Sheet 4 - Motion Problems
Supplementary Sheet 5 - Negative Exponents and Scientific Notation Quadratic Equations

GO TO SCIENTIFIC NOTATION 
 
NEGATIVE EXPONENTS 

The basic concept of the NEGATIVE EXPONENT is to take the INVERSE or RECIPROCAL of the base to the POSITIVE power.

  
  
Rule 1:
  Proof:
  By the DIVISION RULE:
  Therefore:

   Examples:  
 
a)
 
  
  
b)      
 
  
   
c)      
 
  
 
d)  REMEMBER TO USE ORDER OF OPERATIONS:   
   
 

   
FIRST the EXPONENT.....THEN the DOUBLE NEGATIVE

 

  
e)  FIRST write WITHOUT the NEGATIVE EXPONENT...  
   
 
   
                       ...THEN do the ADDITION PROBLEM 
                       This problem was done by first finding the 
                       least common denominator. 

We will learn a NEW quick and easy way to add or subtract two fractions that do not have a common factor other than 1 in their denominators:

 

Using the NEW quick and easy way to add the two fractions we have:
 
 

 
 
 
   

 
  
Rule 2:
 
  
Proof: (using Rule 1)
This is really a DIVISION problem
 

   Examples:  
 
a)
 
  
  
b)  
 
  
  
c)  REMEMBER TO USE ORDER OF OPERATIONS:   
   
 
   
FIRST the EXPONENT.....THEN the DOUBLE NEGATIVE
  
  
d)
  
Remember: A negative exponent means the INVERSE or RECIPROCAL of the
BASE to the POSITIVE power.   In this example  is the BASE.  
   
What we are doing is taking the INVERSE or RECIPROCAL of the BASE to the
POSITIVE power.
 
 
 
 
 
 
GO TO PROBLEMS ON NEGATIVE EXPONENTS  
 
SCIENTIFIC NOTATION - 
MULTIPLICATION and DIVISION  
Suppose we want to find the answer to the following multiplication problem, written in
STANDARD FORM. 

Since we know multiplication is COMMUTATIVE, we can rewrite this  problem as
follows:

Of course, there really is no need to rewrite this problem if we are able to calculate
  and  in our heads. 

We will now find the answer, in STANDARD FORM, to the following  division problem: 

Since we want our answer to be in STANDARD FORM, when we DIVIDE we
ALWAYS bring the  number UP and work out the answer. 

REMEMBER, when we move a number either UP or DOWN, the sign of  the
exponent changes (see RULE 1 and RULE 2 above). 

Here are the steps involved with finding the answer to the DIVISION 
problem above. 
  
1.  Simplify the  part of the problem. 

2.  Bring  UP (it now becomes ) and find this answer. 

3.  Write the final answer in STANDARD FORM. 
 
  

Problems 49 - 56 below deal with MULTIPLICATION and DIVISION using
SCIENTIFIC NOTATION.

 
  Find the answers to the following problems:
  1.      2.    3.    4. 
  5.      6.     7.     8.  
  9.  
10. 
11.   12.  
13.    14.   15.   16. 
17.    18   19.  
20. 
21.   22.   23.   24.  
25.   26.   27.   28. 
29. 
30. 
31.  32. 
33.  34. 
35.
36. 
37.   38.   39.  
40.
41.  
 
 42. 
 
43.   
 
44.  
45.  
 
46.  
 
47.  
 
  48. 
49.  
50.  
51.  
52. 

 
 
 
ANSWERS
1.  2.  3.  4.  5.  6.  7.  8. 
9.   3 10.  -3 11. -3 12.  3 13.  14.  15.  16. 
17. 1 18.  -1 19.  1 20.  2 21.  1  22.  -2  23.  1 24. 3x2y
25.  -4xy  26.  -4x  27.  -4 28.  0 29.  -2  30.  0  31.  -2  32. 
33.   34.   35.  36.   37.   38.  39.   40. 
41.   42.   43.  44.  45.  46.  47.  48. 
49.   584,000,000 
50.   .078 
51.   1.596 
52.   .000168
53.   260 
54.   .000027 
55.   850,000 
56.   .0005

Back to  NEGATIVE EXPONENT PROBLEMS
 
Back to  SCIENTIFIC NOTATION PROBLEMS

© Howard Sorkin 2016   All rights reserved