ALGEBRA
Prof. Howard Sorkin                   Contact

SUPPLEMENTARY SHEET 7
SQUARE ROOTS

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
To DOWNLOAD this page for PRINTING .
If you are unable to do this you need to first DOWNLOAD Adobe's Acrobat Reader. If you are unable to do this you need to first DOWNLOAD Adobe's Acrobat Reader.
To obtain it click on https://get.adobe.com/reader/otherversions/
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notes on Sets Supplementary Sheet 6 - Adding and Subtracting rational expressions with Unlike Denominators
Supplementary Sheet 1 - Sets: Union, Intersection, Complement
Supplementary Sheet 2 - Number and Consecutive Number Word prolems Supplementary Sheet 7 - Square Roots
Supplementary Sheet 3 - Perimeter and Coin Word Problems Investment and Mixture Word Problems
Supplementary Sheet 4 - Motion Problems
Supplementary Sheet 5 - Negative Exponents and Scientific Notation Quadratic Equations
GO TO SIMPLIFYING SQUARE ROOTS
GO TO MULTIPLYING AND SIMPLIFY SQUARE ROOTS
GO TO ADDING and SUBTRACTING SQUARE ROOTS
GO TO SOLVING QUADRATIC EQUATIONS USING THE SQUARE ROOT PROPERTY



SIMPLIFYING SQUARE ROOTS:
 

Remember: When we simplify a square root we look for the largest perfect square which  is a factor of the given number. 

LECTURE ON SIMPLYFING SQUARE ROOTS
 

Example: 

Simplify  

Even though 4 is a perfect square that is a factor or 48, the largest perfect square 
which is a factor if 48 is 16.  If we used 4 we would have to simplify twice instead of 
only once. 
  
Using 4 we would have: 
 
= = = = =
  
THIS IS MUCH TOO MUCH WORK!!! 

Here is the better way:  

= =

 Simplify the following square roots: 

1.    2.    3.   
4.    5.   6.  
7.   8.   9.  
  
  Answers: 
1.   2.   3.  
4.   5.  6.  
7.  8.   not a real number 9. 
  
  

MULTIPLYING and SIMPLIFYING SQUARE ROOTS: 

LECTURE ON MULTIPLYING SQUARE ROOTS 

Example:         Multiply and Simplify:   

This can be done in two different ways: 
THE HARDER WAY!! 
 
=
=
Now you are left with trying to find 
perfect squares that are factors of this 
number. 

This can be difficult. 

We know 9 goes into 4050 by the 
divisibility rule for 9 (9 goes into a 
number if the sum of the digits of the 
number is divisible by 9). 

The sum of 4 + 0 + 5 + 0 is 9. 

Since 9 is divisible by 9, 9 goes into 4050. 

 
 

THE EASIER WAY!! 
 
  
 


Multiply and Simplify: 
1.   2.   3.  
4.   5.  6.  
7.  8.  9. 
  
Answers: 
1.  2.  3.  4.  5.  6.  7.   8.   9. 

 

 ADDING and SUBTRACTING SQUARE ROOTS 

 Just as we must have like terms when adding or  subtracting algebraic expressions 
 we must have like square roots when we add or subtract square roots. 

LECTURE ON ADDING SQUARE ROOTS 

   
Example:      Find the answer to   

The square roots in this problem are not like square roots. 

First we need to simplify each square root. 


Find the answers to each of the following:
1.  2.  3. 
4.  5.  6. 
7.  8.  9. 
10.  11.  12. 
13.  14.  15. 
16.  17.  18. 

Answers:
1.  2.  3.  4.  5.  6. 
7.  8.  9.  10.  11.  12. 
13.  0 14.  0  15.  16.  17.  18. 

 

 SOLVING QUADRATIC EQUATIONS USING THE SQUARE ROOT PROPERTY 

LECTURE ON THE SQUARE ROOT PROPERTY
 

Example 1: 
 
Solve: x 2  =  25
The way we are used to solving this equation is to set the equation equal to zero. 
 
x 2 -  25  =  0
Next we factor:  
                 (x - 5) (x + 5)  = 0
  x - 5 = 0
x = 5
      x + 5 = 0
x = - 5

The Solution Set is {- 5, 5}.

Another way we can write this is {}

When we have an equation involving the difference of squares (i.e. x 2  - a 2  =  0
we should realize that we will always get an answer that is always plus and minus 
the square root of a 2 .

In the case of Example 1 the answer is:   - or +  or - 5 and + 5 

This fact can be used to solve the equation 

                        x 2  =  25 

by using the SQUARE ROOT PROPERTY
 

The SQUARE ROOT PROPERTY states
that if we have an equation of the form:
  
x 2  = a 
then x =    or   x = - 
  
        
In solving x 2  =  25 we have: 

            x =   -?  or +  

which we can write x =  

In Solution Set form: {
 
 

Example 2: 

We can now use the SQUARE ROOT PROPERTY to 
solve equations that we could not solve before. 

Solve: x 2  =  19 

If we set this equal to zero we can see that this is not a 
difference of squares, however, by the SQUARE ROOT PROPERTY: 

 x =  or x = - or
x = 

In Solution Set form { }

  
**************************************************
Example 3: 

Solve: x 2  =  20 

We now know that x =  or x = - or 

Simplifying:  x =   or 

                     x =  

so  x = 

In Solution Set form {
 

  
 Solve each of the following equations.  Express radicals in simplest form. 
 1.   2.   3. 
 4.   5.   6. 
 7.   8.   9. 
10.  11.  12. 

 Answers:
 1.   {8}  2.   {10}   3.   {}  4.   {}   5.   {}  6.   {}
 7.   {}  8.   {}   9.   {} 10.   {} 11.   {} 12.   {}

© Howard Sorkin 2016   All rights reserved